证垂心的方法;垂心证明方法
今天合众百科就给我们广大朋友来聊聊证垂心的方法,以下关于观点希望能帮助到您找到想要的答案。
- 1、垂心定理证明
- 2、如何求点的垂心
- 3、奔驰定理垂心证明过程
本文分为以下多个相关解答:
垂心定理证明
最佳答案三角形的三条高交于一点.该点叫做三角形的垂心.其性质包括:1.三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆.2.垂心外心内心三心共线.3.垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍.已知:ΔABC中,AD、BE是两条高,AD、BE交于点连接CO并延长交AB于点F 求证:CF⊥AB 证明:连接DE ∵∠ADB=∠AEB=90度 ∴A、B、D、E四点共圆 ∴∠ADE=∠ABE ∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC ∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度 ∴∠ACF+∠BAC=90度 ∴CF⊥AB 因此,垂心定理成立!这里不方便画图,我就用文字来表达了
画任意一个三角形ABC,垂心为D,外心为E,设B垂AC于F,
C垂AB于H,做△ABC的外接圆,ABC为三顶点abc为三内角
S为△ABC的面积
由正弦定理AB/sinc=BC/sina=AC/sinb=2R
由图像得∠c=∠BEH
∴EH=Rcosc=AB/(2tanc)
CD=CF/cos∠ACH=BCcosc/(CH/AC)=AC*BC*cosc/CH
AC*BCsinc/2=S=AB*CH/2
代入上式得CD=AB/tanc=2DH
如何求点的垂心
最佳答案假设CF与BE交于G点
现在需要证明的是:G点位于AD上:
根据梅氏定理:(CE/EA)(AB/BF)(FG/GC)=1
即:1*2(FG/GC)=1
即:FG/GC=1/2
故:CG=2CF/3
CF=(CA+CB)/2
故:CG=(CA+CB)/3
故:GD=CD-CG=CB/2-CG
=CB/2-(CA+CB)/3
=-CA/3+CB/6
=(-1/6)(2CA-CB)
AG=CG-CA=(CA+CB)/3-CA
=-2CA/3+CB/3
=(-1/3)(2CA-CB)
即:AG=2GD
即:AG、GD共线
即:A、G、D三点共线
即原结论得证
三角形的垂心定理:在三角形ABC中,求证:它的三条高交于一点。
证明:如图:作BE⊥AC于点E,CF⊥AB于点F,且BE交CF于点H,连接AH并延长交BC于点D.现在我们只要证明AD⊥BC即可。
因为CF⊥AB,BE所以 四边形BFEC为圆内接四边形.四边形AFHE为圆内接四边形。
以∠FAH=∠FEH=∠FEB=∠FCB由∠FAH=∠FCB得四边形AFDC为圆内接四边形所以∠AFC=∠ADC=90°即AD⊥BC。
奔驰定理垂心证明过程
最佳答案奔驰定理垂心证明过程如下:
三角形的三条高线所在直线的交点叫做三角形的垂心。
锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。
定义:
垂心是从三角形的各个顶点向其对边所作的三条垂线的交点。
锐角三角形垂心在三角形内部。
直角三角形垂心在三角形直角顶点。
钝角三角形垂心在三角形外部。
三角形三个顶点,三个垂足,垂心这7个点可以得到6组四点共圆。
口诀:
三角形上作三高,三高必于垂心交。
高线分割三角形,出现直角三对整。
直角三角有十二,构成九对相似形。
四点共圆图中有,细心分析可找清。
性质:
设△ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、C的对边分别为a、b、c,p=(a+b+c)/2。
1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。
2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心。
3、 垂心H关于三边的对称点,均在△ABC的外接圆上。
4、 △ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH·HD=BH·HE=CH·HF。
5、 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。
6、 △ABC,△ABH,△BCH,△ACH的外接圆是等圆。
7、 在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则 AB/AP·tanB+AC/AQ·tanC=tanA+tanB+tanC。
8、 设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。
9、 锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。
10、 锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短(施瓦尔兹三角形,最早在古希腊时期由海伦发现)。
11、西姆松定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
12、 设锐角△ABC内有一点P,那么P是垂心的充分必要条件是PB*PC*BC+PB*PA*AB+PA*PC*AC=AB*BC*CA。
13、设H为非直角三角形的垂心,且D、E、F分别为H在BC,CA,AB上的射影,H1,H2,H3分别为△AEF,△BDF,△CDE的垂心,则△DEF≌△H1H2H3。
14、三角形垂心H的垂足三角形的三边,分别平行于原三角形外接圆在各顶点的切线。
15、三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。(垂心伴随外接圆,必有平行四边形)
推论(垂心余弦定理):锐角三角形ABC的垂心为H,则AH/cosA=BH/cosB=CH/cosC=2R(可引入有向距,推广到任意三角形)
16、等边三角形的重心把三角形的高分成2:1两段,靠近顶点的那段长度为高的三分之二。(高中学习中常用知识。)
明白证垂心的方法;垂心证明方法的一些要点,希望可以给你的生活带来些许便利,如果想要了解其他内容,欢迎点击合众百科的其他栏目。
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息储存空间服务,不拥有所有权,不承担相关法律责任。如有发现本站涉嫌抄袭侵权/违法违规的内容,请发送邮件,一经查实,本站将立刻删除。